
Trumpet slices in Kruskal-like coordinates

It is possible to write the Schwarzschild metric in the Kruskal-type coordinates T,R, θ, φ as

ds2 = F (T,R)
(
−dT 2 + dR2

)
+ rS(T,R)2dΩ2,

where rS is the Schwarzschild radial coordinate. The Kruskal’s coordinates RK , TK

TK =
vK + uK

2
, RK =

vK − uK
2

uK = −
√∣∣∣ rS

2M
− 1
∣∣∣ e rS−tS

4M sgn(rS − 2M), vK =

√∣∣∣ rS
2M
− 1
∣∣∣ e tS+rS

4M

have inappropriate behavior farther from the horizon, so instead to cover the area v > 0 of the
Schwarzschild manifold (see [1]) we will use

T =
v + u

2
, R =

v − u
2

u = −4M arcsinh

(√∣∣∣ rS
2M
− 1
∣∣∣ e rS−tS

4M

)
sgn(rS − 2M),

v = 4M arcsinh

(√∣∣∣ rS
2M
− 1
∣∣∣ e rS+tS

4M

)
With these coordinates we have

ts = −2M log

∣∣∣∣UK

VK

∣∣∣∣ = −2M log

∣∣∣∣sinh u
4M

sinh v
4M

∣∣∣∣ , (1)

(rs
2M
− 1
)

exp
(rs

2M

)
= − sinh

u

4M
sinh

v

4M
, (2)

F (T,R) = −
(

1− 2M

rs

)
coth

u

4M
coth

v

4M
. (3)

Since at the spatial infinity v ≈ −u ≈ ∞ we get F (T,R) ≈ 1 there and T,R behave there
approximately as time and space coordinates of the Minkowski spacetime.

Problem

Consider a hypersurface Σ given by prescription T = H(R) (when given in T-R coordinates)
or tS = h(rs) if we use the Schwarzschild coordinate tS, rS and function h used in [2] (note that
there the Schwarzschild coordinates are named T and R).

• Consider the differential equation for the trumpet slice, which according to [2] reads

fh′ = − 1

α

Cn

r2
s

e
α
n (4)

where f = 1−2M/rS, α is given in paper [2] by eqs. (37-39) and Cn by eqs. (42) and (43).
The Schwarzschild coordinates are not regular at the horiozn and thus also h(rS) diverges
there. It means that (4) is not suitable differential equation for unknown function h(rS).

Nevertheless the combination fh′ is regular and using the coordinate transformations
given above from fh′ you can compute the derivative H ′ = dH(R)/dR and thus you can
plot slice Σ in coordinates R, T , such that TΣ = H(R).

1

• Find this transformation from fh′ to H ′ and numerically solve solve the differential equa-
tion for H(R) with the boundary condition H(R =∞) = T∞.

According to your preferences you may choose instead of solving the transcendent alge-
braic equations for rS and α to find them as solutions of respective differential equations
and solve them together with the ODE for H(R).

• Plot in the R− T plane (in the region v > 0) lines of constant rS, tS and H(R) for
T∞/M = −4,−3, ..3, 4 and n = 2 (1+log slicing) and n =∞ (maximal slicing).

Other information

• The derivative h′ for a hypersurface given by some function H(R) can be determined from
the ratio

dh

drs
=
dts
drs

=

dts(R, T (R))

dR
drs(R, T (R))

dR

. (5)

• The derivative drs/dR can be obtained by differentiating the implicit function (2):

drs
dR

= f
sinh

(
R

2M

)
− T ′(R) sinh

(
T (R)
2M

)
cosh

(
R

2M

)
− cosh

(
T (R)
2M

) (6)

• Similarly

dts
dR

=
sinh

(
R

2M

)
T ′(R)− sinh

(
T (R)
2M

)
cosh

(
R

2M

)
− cosh

(
T (R)
2M

) (7)

• For the numerical solution, it is not necessary to work out the expressions up to the
form when they are well defined on the horizon. The numerical method will not hit a
point precisely on the horizon and the introduced numerical error does not matter for the
purpose of plotting the graph.

• The asymptotic expansion of (4) allows one to find h(rs) ≈ T∞ + Cne
1
n r−1

s +O(r−2
s) and

so we do not have to start the integration at the infinity.

In Mathematica you may use following code to get α(rs):

αcn[n_] :=

Sqrt[(Sqrt[4 + 9 n^2] - 3 n)/(Sqrt[4 + 9 n^2] + 3 n)]

Cn2[n_] := Cn2[n] =

N[(Sqrt[4 + 9 n^2] + 3 n)^3/(128 n^3) Exp[-2 αcn[n]/n]]

αr[rs_Real , n_] := α /. FindRoot[

α^2 == 1 - 2/rs + Cn2[n] Exp[2 α/n]/rs^4,
{α, αcn[n] // N}]

In Python you may use following code:

2

import math

import numpy as np

import scipy.optimize

import matplotlib.pyplot as plt

n = 2

alpha_c = math.sqrt((math.sqrt(4 + 9*n*n) - 3*n)/(math.sqrt(4 + 9*n*n) + 3*n))

Cn2 = (math.sqrt(4 + 9*n*n) + 3*n)**3 / (128*n**3) * math.exp(-2*alpha_c/n)

r_c = (3*n*n+math.sqrt(4*n*n+9*n**4))/(4*n*n)

def eq39(alpha):

return -alpha**2 + 1 - 2/rs1 + Cn2* math.exp(2*alpha/n)/rs1**4

def sol39(rs):

global rs1

rs1 = rs

if rs<r_c:

return scipy.optimize.brentq(eq39, -10, alpha_c)

return scipy.optimize.brentq(eq39, alpha_c,1)

print(sol39(3.))

References

[1] Misner, Throne, Wheeler, Gravitation, Princeton, 1973.
[2] M. Hannam, S. Husa, F. Ohme, B. Brügmann, N. Ó Murchadha, Phys. Rev. D 78, 064020
(arxiv.org/abs/0804.0628).

3

